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Abstract Sketching provides the most natural way to provide a visual search1

query for visual object search. However, how to draw 3D sketches in a three-2

dimensional space and how to use a hand-drawn 3D sketch to search similar 3D3

models are not only interesting and novel, but also challenging research topics.4

In this paper, we try to answer them by initiating a novel study on 3D sketching5

and build a 3D sketching system which allows users to freely draw 3D sketches6

in the air and demonstrate its promising potentials in related applications such7

as collecting 3D sketch data and conducting 3D sketch-based 3D model retrieval.8

By utilizing the 3D sketching system, we collect a 3D sketch dataset, build a 3D9

sketch-based 3D model retrieval benchmark, and organize a Eurographics Shape10

Retrieval Contest (SHREC) track on 3D sketch-based shape retrieval based on the11
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benchmark. We investigate 3D sketch and model matching problems and propose12

a novel 3D sketch-based model retrieval algorithm CNN-SBR based on Convolu-13

tional Neural Networks (CNNs) and achieve the best performance in the SHREC14

track. We wish that the 3D sketching system, the 3D sketch-based model retrieval15

benchmark, and the proposed 3D sketch-based model retrieval algorithm CNN-16

SBR will further promote sketch-based shape retrieval and its applications. We17

have made all of these publicly available on the project homepage: http://orca.18

st.usm.edu/~bli/SBR16/project.html.19

Keywords 3D sketching · Kinect · Sketch-based 3D model retrieval · Convolu-20

tional Neural Networks21

1 Introduction22

Content-based 3D shape retrieval [66] is important for many various related ap-23

plications such as computer-aided design (CAD), 3D movie and game production,24

augmented reality (AR), virtual reality (VR), and 3D printing. Given a query25

which is often a 2D sketch/image or a 3D model, content-based 3D model retrieval26

is to retrieve relevant 3D models (typically only single object models) coming from27

the same category as the query based on a similarity/distance metric. Effective-28

ness, efficiency, and scalability are the three most important performance aspects,29

which can be measured by a set of retrieval performance evaluation metrics [59] [39]30

that are commonly used in the field of information retrieval.31

Due to the intuitiveness, convenience and potential for related applications,32

sketch-based 3D shape retrieval has received a lot of attentions from both inside33

and outside of the community of 3D shape retrieval. As we know, as a univer-34

sal form of communication to depict the visual world, sketching has been used35

by human beings since tens of thousands of years ago [22]. Nowadays, sketch-36

ing has become one of the most natural and popular ways to provide a visual37

search query for retrieval, e.g., one can search images [15], videos, and 3D mod-38

els [39] [38] [18] [16] [17] on the Internet by sketching an object or scene on a touch39

screen phone/tablet.40

However, the type of sketch-based 3D shape retrieval often only involves 2D41

sketching in a two-dimensional space (i.e. a paper or screen), rather than drawing42

a 3D sketch (3D skeleton specifically for us) in a three-dimensional space, which43

we refer to as “3D sketching”. By limiting a sketch to only two dimensions, we also44

lose most 3D information that the shape can communicate, thus creating a huge45

semantic gap between the iconic representation of a 2D sketch and the accurate 3D46

coordinate representation of a model. Due to this semantic gap, 2D sketch-based47

shape retrieval becomes a very challenging task [39] [38].48

In the hope of bridging this semantic gap, why not considering 3D sketching49

such that we can provide a 3D sketch query and perform 3D sketch-based shape50

retrieval? If provided with a convenient 3D sketching human-computer interface to51

draw a 3D sketch query, we have a better chance to achieve significant improvement52

in the performance of sketch-based 3D model retrieval. This is because inherently53

both 3D sketches and 3D models are represented by 3D coordinates, that is, these54

two representations come from the same domain. A 3D sketch query is typically55

composed of a set of salient 3D feature lines of the shape that the 3D sketch56

http://orca.st.usm.edu/~bli/SBR16/project.html
http://orca.st.usm.edu/~bli/SBR16/project.html


3D Sketching for 3D Object Retrieval 3

depicts. Therefore, compared with a 2D sketch, a 3D sketch explicitly encodes57

much more 3D information, such as the depth information and features of more58

facets of the shape. However, we find that there is a lack of comprehensive research59

in 3D sketching interfaces that allow users to sketch 3D shapes in a 3D space, 3D60

sketch understanding, 3D sketches-3D models matching, as well as 3D sketch-based61

applications.62

In this paper, we perform a new study of 3D sketching technology and de-63

velop a 3D sketching system which allows users to sketch an object in the air by64

tracking the user’s hand movement with a Microsoft Kinect. Please note that our65

idea is general, thus other 3D motion controller devices are also applicable for66

this project, as long as they can detect the 3D location of our hands’ trajectories67

and also can receive voice commands to avoid mouse operations during drawing.68

By utilizing the 3D sketching system, we collected a 3D sketch dataset, built a69

3D sketch-based shape retrieval benchmark, and organized a Eurographics Shape70

Retrieval Contest (SHREC) track on 3D sketch-based shape retrieval [35] based71

on the benchmark. Further, to investigate 3D sketches-3D models matching, we72

propose a basic 3D sketch-based shape retrieval system [35] based on 3D shape73

histogram [1]. We also propose a more advanced and novel 3D sketch-based shape74

retrieval system CNN-SBR [73] based on Convolutional Neural Networks (CNNs).75

We participated in the aforementioned SHREC track based on our learning-based76

method CNN-SBR and won the First Place among all the learning-based partic-77

ipating approaches while its performance is also significantly better than any of78

the non-learning based participating approaches. We believe that the 3D sketch-79

ing system, the 3D sketch-based shape retrieval benchmark, and the proposed80

3D sketch-based shape retrieval algorithm CNN-SBR will further promote sketch-81

based 3D shape retrieval and its applications. We have made all of these publicly82

available on the project homepage1.83

This paper is extended from our previous work on 3D sketching technology84

and 3D sketch-based shape retrieval [36] [73] [35]. To the best of our knowledge,85

we are the first to explore 3D sketching [36] in a free 3D space and to develop86

an innovative retrieval system that enables users to search 3D models based on87

human hand-drawn 3D sketches. Since 3D sketching allows us to have more direct88

communication based on users’ drawings, it has broad impact on many related89

applications, such as sketch-based shape retrieval and other human sketch related90

applications, including hand gesture recognition for virtual reality applications,91

and virtual try-on systems for clothes, glasses and watches. The application back-92

ground also serves the second motivation of this project since it involves a new93

interaction mode: rather than using pencil and paper, we use our hands directly.94

The amazing thing for this is its convenience and reachability since even kids95

can also do 3D sketching. The main contributions of our work are highlighted as96

follows:97

– We propose and implement a novel 3D sketching system, which allows users98

to freely draw 3D sketches in the air (a real 3D space). We also collect the first99

human 3D sketch dataset based on it.100

– To study and tackle the new problem of 3D sketches-3D models matching, a101

basic 3D sketch-based shape retrieval system is first introduced.102

1 http://orca.st.usm.edu/~bli/SBR16/project.html

http://orca.st.usm.edu/~bli/SBR16/project.html
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– To deal with this challenging matching problem, a more advanced and novel103

3D sketch-based shape retrieval system CNN-SBR is further proposed based104

on Convolutional Neural Networks.105

– Comprehensive experiments have been conducted to evaluate our CNN-106

SBR algorithm and the experimental results demonstrate the state-of-the-art107

performance of our approach.108

2 Related Work109

2.1 Sketching110

Sketches can be artistic sketches, drawings, diagrams, schematics, and blueprints [29],111

created for quick but informal communication via abstract and uncertain elements112

which may have ambiguity in their interpretation and different meanings in terms113

of semantics.114

Sketching has a very long history [22] and is a traditional way for people to115

record, demonstrate, and develop an idea. There is a universal capacity for vi-116

sual communication in humans [48]. That is why oracle bone script was used by117

primitive people to tell stories in prehistoric times and even nowadays there is a118

whiteboard in every meeting room. Sketching is easier and quicker for commu-119

nication: a complicated shape can be perceived and imagined with only a few120

strokes. Compared with text, sketches are incredibly intuitive to humans and offer121

inherently fine-grained visual descriptions in the context of image retrieval [75].122

With the proliferation of touch-screen devices, such as smart phones, tablets123

and smart watches, we see the popularity of the research in hand-drawn sketches124

and its related applications including sketch recognition, sketch-based image re-125

trieval (SBIR), sketch-based 3D model retrieval, and sketch-based interface for126

modeling (SBIM). For example, Li et al. [41] proposed detecting visual attributes127

of shoe sketches and images at part-level for fine-grained (i.e. within the same128

category, like shoes) sketch-based image retrieval (FG-SBIR). Unfortunately, its129

experiments and evaluations were only performed on a shoe dataset.130

However, none of the above involves 3D sketching and 3D sketch dataset. Fa-131

cilitated by a Microsoft Kinect, we are the first [36] to study 3D sketching and132

propose a 3D sketching system to collect 3D sketches and perform 3D sketch-based133

3D shape retrieval.134

2.2 Sketch Datasets135

Most early sketch datasets are small-scale collections including artistic draw-136

ings [62], professional CAD figures [46], and specific domain structure sketches [49] [44].137

Recently, a large-scale collection of free-hand sketches, the TU Berlin sketch dataset [14],138

is open to the public, which contains 20,000 single-object sketches in 250 daily ob-139

ject categories. Here is a list of brief survey of several available sketch datasets.140

(1) Snograss and Vanderwart’s standard line drawings (1980) [61]141

contains 260 standard line drawings for experiments in cognitive psychology.142

(2) Cole et al.’s line drawing benchmark (2008) [9] is composed of 12 line143

drawings of bones, mechanical parts, tablecloths and synthetic shapes, together144
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with corresponding 3D models, for the relationship study between human-drawn145

sketches and computer graphics feature lines.146

(3) Yoon et al.’s sketch-based 3D model retrieval benchmark (2010) [74]147

has 250 2D sketches and 260 watertight models [68], divided into 13 classes for148

sketch-based shape retrieval and evaluation.149

(4) Eitz et al.’s sketch-based shape retrieval benchmark (2012) [16]150

collects one sketch per model for all the 1814 models existing in the well-known151

Princeton Shape Benchmark (PSB) [59].152

(5) Eitz et al.’s sketch recognition benchmark (TU Berlin sketch153

dataset, 2012) [14] is the currently largest and most comprehensive 2D sketch154

recognition benchmark. It contains 20,000 sketches, uniformly divided into 250155

categories.156

(6) Hu et al.’s sketch-based image retrieval benchmark (Flickr15K157

dataset, 2013) [24] complies 15K Flickr images and 330 sketches over 33 cate-158

gories to evaluate sketch-based image retrieval algorithms.159

(7) Disney portrait dataset (2013) [7] is composed of 672 portrait sketch160

images drawn by seven artists at four abstraction levels.161

(8) Huang et al.’s sketch segmentation and labeling benchmark (2014)162

[26] comprises 300 sketches, uniformly divided into 10 classes. Each sketch (i.e. hu-163

man) has been manually segmented into components and each component has been164

assigned a label (i.e. head, hand, body and foot). The benchmark also contains165

401 relevant 3D models.166

(9) Li et al.’s shoe sketch dataset (2016) [41] has 304 images and 912167

sketches, each of which is annotated with semantic parts and part-level attributes.168

(10) Sangkloy et al.’s Sketchy dataset (2016) [53] is created for fine-169

grained sketch-based image retrieval. It has 75,471 sketches for 12,500 objects170

belonging to 125 categories.171

According to our knowledge, all of the currently available sketch datasets,172

including above ones, are for 2D sketches and none of them involves 3D sketches.173

We are the first to build a 3D sketch dataset in this manner.174

2.3 Sketch Recognition175

Previously, sketching is introduced as a human-computer interaction (HCI) tech-176

nology [65] [23], where users use a mouse or pen to draw lines and curves based on177

a graphical user interface. Before 2014, hand-crafted low-level features, including178

stroke length, stroke order and even stroke orientation, were proposed to under-179

stand human sketch input at a semantic level. A simplified Histogram of Gradients180

(sHOG) feature coupled with the Bag-of-Words (BoW) method [14] has demon-181

strated a promising sketch recognition accuracy of 56% based on the TU Berlin182

sketch dataset [14]. Sun et al. [64] proposed to mine object and shape topics exist-183

ing in retrieved clipart images for a query sketch by utilizing a probabilistic topic184

model. In 2014, Schneider [54] achieved human-like sketch recognition accuracy185

(68.9% vs. 73.1% for human on the TU Berlin dataset) based on Fisher Vectors186

which represents an image by pooling local image features. However, all of the187

aforementioned methods involve designing a hand-crafted feature for the sketch188

recognition purpose, while no single “designed” feature previously proposed by189

people in this field has ever performed generally well for different types of sketches,190
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including sketching styles and different levels of abstraction. This poses a natural191

limit on the performance of sketch recognition and its possible extensive applica-192

tions in our daily life.193

After 2014, machine learning, especially deep learning, based sketch recognition194

approaches have dominated the field of sketch recognition. Li et al. [42] proposed195

a Multiple Kernel Learning (MKL) framework to fuse several low-level sketch fea-196

tures and high-level attribute features for sketch recognition and employed star197

graph ensemble matching to address the structure complexity of sketches. Re-198

cently, Yu et al. [76] [77] proposed a deep neural network named “Sketch-a-Net”199

for hand-drawn sketch recognition which outperforms human beings and achieves200

an accuracy of 74.9% on the TU-Berlin sketch dataset [14]. Deep convolutional201

neural networks have been utilized in complete [55] or partial [13] sketch recogni-202

tion, which achieve an accuracy of 75.42% and 77.69% respectively on the same203

TU-Berlin dataset. While, an extended version has been proposed by the same204

group [56], which can achieve an accuracy of 79.18%. Li et al. [43] proposed a205

general free-hand sketch synthesis algorithm which can automatically summarize206

the stroke composition of a given category and discover semantic parts from stroke207

data. A recurrent neural network (RNN) representation has been proposed by the208

Google Brain [21] for generating sketch drawings.209

Our proposed Convolutional Neural Network-based 3D sketch-based shape re-210

trieval algorithm CNN-SBR also involves 2D sketch recognition since we transform211

the problem of direct classification of 3D sketches into 2D sketch views classifica-212

tion. We utilize the aforementioned TU Berlin dataset [14] for training our CNN213

as well. Thus, it is related to and also can be applied to sketch recognition.214

2.4 Sketch-Based Modeling215

With the developments of 3D data acquisition tools and multi-media storage and216

processing techniques, more and more 3D digital media contents are available to217

us. 3D models become ubiquitous and have been widely used in many fields such as218

game, movie, medicine, biology and architecture. Scientists also create 3D models219

for visualization and engineers use 3D models to design new styles for industrial220

products such as vehicles and computer mice. Usually, a 3D model is a collection221

of points in 3D space, connected by triangles, lines, curved surfaces, etc.222

We can create a 3D model using many 3D modeling techniques. Basic 3D223

modeling techniques include polygonal modeling, NURBS modeling, constructive224

solid geometry, implicit surface and subdivision surfaces and procedural modeling.225

Beside these basic 3D modeling techniques, we have another four advanced 3D226

modeling techniques: geometric and solid 3D modeling, multi-view images-based227

3D modeling, and sketch-based 3D modeling.228

Traditional modeling software is so complicated that only professional users can229

use them to create models in a given time. However, sketch-based 3D modeling230

systems aim at providing more intuitive and user-friendly interfaces to express our231

thoughts simply through sketching. Therefore, they will be accessible for novice232

users, even children. The key issue of designing sketching system is to infer missing233

information such as depth. Sketching systems also need to handle ambiguity in234

users’ input. Many sketch-based 3D modeling systems have been proposed since the235

pioneer work of Zeleznik et al. [78]. Usually these sketch-based modeling systems236
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have simple interfaces and are easy to learn and to use. A comprehensive survey237

has been presented in [48] and [12], respectively.238

Igarashi et al. [27] introduced a sketching interface named Teddy to quickly239

and easily construct free-form models that have spherical topology. It uses free-240

form strokes as an expressive design tool to specify the silhouette of an object.241

Nealen et al. [47] aimed at surface detail preservation by sketching significant242

shape details on already existing coarse or detailed shapes. Bae et al. [4] proposed243

a 3D curve sketching system named ILoveSketch which facilitates users to iterate244

on concept 3D curve models during a design process. Shao et al. [58] generated245

shaded concept sketches by leveraging properties of designer-drawn cross sections246

to automatically infer and propagate 3D normals everywhere on a sketch. Jung247

et al. [31] presented the first sketch-based 3D modeling method for developable248

surfaces with pre-designed folds (i.e., garments or leather products) by introduc-249

ing a new zippering algorithm for progressive identification of silhouette edges250

and their binding to silhouette strokes. A sketch-based 3D modeling system called251

SecondSkin targeting layered 3D model construction was proposed by Paoli and252

Singh [50]. Huang et al. [25] proposed a sketch-based procedural model construc-253

tion approach by automatically computing a set of procedural model parameters254

based on a deep Convolutional Neural Network (CNN) which maps sketches to255

procedural model parameters after training on a large number of synthetic line256

drawings. Sketch-based interfaces and modeling (SBIM) have been applied into257

many application fields such as tree modeling, flower modeling, and cloth model-258

ing. Recently, an important and promising trend in this research axis is to explore259

VR-based 3D sketching for 3D modeling [2, 28].260

Among all the aforementioned 3D modeling techniques, sketch-based 3D mod-261

eling is one of the most important, intuitive and popular ones. While, different262

from previous sketch-based 3D modeling techniques that separate sketch-based263

interfaces and modeling (SBIM) and sketch-based 3D model retrieval (SBR) from264

each other, our 3D sketching and retrieval system combines SBIM and SBR to-265

gether, thus being more concise, versatile and comprehensive. 3D sketches drawn266

by users in our 3D sketching system may also be different from 3D skeletons of 3D267

objects being drawn by users in previous sketch-based 3D modeling systems.268

2.5 Sketch-Based 3D Model Retrieval269

Sketch-based 3D model retrieval targets on retrieving 3D models given a hand-270

drawn query sketch. Recently, sketch-based shape retrieval has attracted much271

attention since it can be widely used in sketch-based rapid prototyping, recog-272

nition, mobile 3D search, 3D printing, 3D animation production and etc. Many273

related algorithms that use a 2D hand-drawn sketch as a query have been pro-274

posed [39] [38] [18] [16] [17]. A skeleton sketch-based 3D articulated model re-275

trieval approach is proposed in [52]. A series of Shape Retrieval Contest (SHREC)276

tracks on this topic have been held in conjunction with the Eurographics Work-277

shops on 3D Object Retrieval (3DOR) between 2012 and 2016. Some new bench-278

mark datasets have been built and released to the public, such as the large scale279

SHREC’13 Sketch Track Benchmark (SHREC13STB) [37] which contains 7,200 2D280

sketches and 1,258 3D models of 90 classes, and the large scale SHREC’14 Sketch281

Track Benchmark (SHREC14STB) [39] that has 13,680 sketches and 8,987 models282
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of 171 classes. Due to the semantic gap between the two different representations283

of rough sketches and accurate 3D models, sketch-based shape retrieval remains284

one of the most challenging research topics in the field of 3D model retrieval. In285

order to bridge the gap, we propose a 3D sketching solution and develop two 3D286

sketch-based 3D model retrieval systems that use human 3D sketches as query,287

and they are described in detail in Section 5.288

Recently, deep Convolutional Neural Networks (CNNs) have shown promising289

results in many vision recognition tasks in different domains. CNN was introduced290

in early 1980s, and was applied to solve simple and small vision recognition tasks291

like handwritten digit recognition [33]. Currently, Wang et al. [69] learned two292

Siamese Convolutional Neural Networks (CNNs) for sketch-based shape retrieval:293

one for the views of 3D models, one for sketches. They connected the two CNNs294

via a loss function to compute cross-domain similarities. Similarly, a Cross-Domain295

Neural Network (CDNN) and its extended version Pyramid CDNN have been296

proposed in [79]. An octree-based Convolutional Neural Network (O-CNN) [70] is297

proposed to represent a 3D shape and it supports various CNN structures and has298

a quadratic space and time complexity. While, Xie et al. [72] devised a barycentric299

representation of 3D shapes for sketch-based 3D shape retrieval, which outperforms300

the state-of-art algorithms on the SHREC’13 [37] [38] and SHREC’14 [40] [39]301

sketch track benchmarks SHREC13STB and SHREC14STB. Recently, Dai et302

al. [10] proposed a deep correlated holistic metric learning (DCHML) approach303

which jointly trains two distinct deep neural networks, one for each domain,304

with one loss function to depict both inter-class differences and intra-class vari-305

ations. It has achieved the state-of-the-art performance on SHREC’13 [38] [37]306

and SHREC’14 sketch [40] [39] track benchmarks, and also outperforms some307

top algorithms, such as CNN-Siamese [35] on the latest SHREC’16 sketch track308

dataset [35]. However, there is still much room for further improvement in the re-309

trieval performance. For example, even for the top-performing algorithm DCHML,310

the average precision on the SHREC’16 sketch track dataset is only 0.147. A gen-311

eral CNN-based model trained on edge maps that can handle multiple tasks includ-312

ing both general and fine-grained sketch-based image retrieval, as well as domain313

generalization, has been proposed in [51]. Recently, similarity search in 3D human314

motion data has raised a lot of attentions [5, 6, 57] due to its many application315

scenarios in VR, AR, MR and Internet of Things (IoTs). It deals with the search,316

matching, and classification based on 3D human motion data. Giunchi et al. [20]317

proposed to search appropriate 3D models for 3D scene completion by immersive318

3D sketching within a virtual environment. They focused on precise immersive319

sketching to distinguish between similar objects within a large class of objects,320

that is, fine-grained retrieval. Also, they enabled sketching over existing models321

by utilizing a VR equipment, rather than sketching in a VR-free environment, like322

us. Similar to Su et al. [63], they utilized the standard VGG-M [8] model-based323

multi-view CNN network to recognize a colored 3D sketch based on its multiple324

views: first extract the local features for each view based on five convolutional325

layers, then aggregate the local features across multiple views by element-wise326

max pooling, finally feed the pooling results into three fully connected layers for327

classification. However, different from both Giunchi et al. [20] and Su et al. [63],328

we directly classify each view first using a CNN network pre-trained on a large 2D329

sketch dataset, and then use majority voting to combine the multiple classification330

results for a 3D sketch for ranking and retrieval.331
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In this paper, different from almost all of the above algorithms (only excluding332

Giunchi et al. [20]) that focus on 2D sketch-based shape retrieval, we propose333

the idea of 3D sketch-based shape retrieval and devise two retrieval systems for334

this new research topic. This novel work opens and establishes a new direction in335

dealing with the challenging research topic of sketch-based shape retrieval.336

3 3D Sketching337

As mentioned in Section 1, a user-friendly 3D sketching interface is important338

and required to provide a 3D sketch query for the 3D sketch-based shape retrieval339

system. By utilizing such 3D sketching interface, users can easily depict the shape340

of a 3D object by drawing several salient 3D feature lines in a 3D space by using341

a tool, such as a digital pen or just our hands directly. Unfortunately, there are342

few existing such interfaces available for us to use. However, we have Microsoft343

Kinect (or other similar motion sensing input devices) which can serve as a perfect344

platform for us to develop one such interface enabling 3D sketching in the air.345

Please note that we prefer Kinect over Leap Motion due to at least its following346

two limitations for our project. (1) Its usable range (1 to 20 inches) is much347

smaller than that of Kinect (1.2m to 3.5m), which puts a much stricter limit on348

the allowable space for our hands’ movement. (2) As mentioned in Section 1, voice349

functionality is required to avoid mouse operations during drawing since we often350

require to send voice commands for starting the drawing, changing viewpoints,351

pausing, showing more results, etc. However, Leap Motion does not integrate any352

voice sensor and related API library for development purposes, which means an353

additional voice input processing system is required if we adopt it for our 3D354

sketching interface.355

As illustruated in Fig. 1, as one of the most popular and low-cost motion356

sensing input devices, a Kinect device provides us with the following three features357

to utilize during 3D sketching: (1) Keep Tracking: a built-in RGB video camera358

which allows users to closely monitor their hand movement in the air; (2) Keep359

Drawing: a depth sensor to track the 3D locations of a user’s hand movement to360

generate the 3D sketch, and (3) Keep Listening: a multi-array microphone which361

has voice recognition capacity such that it can receive voice commands from the362

users, thus avoiding mouse operations during drawing.363

As shown in Fig. 2, a voice-activated Kinect-based 3D sketching Graphical364

User Interface (GUI), which supports tracking and visualizing the trajectory of a365

user’s hand movement, is developed to help the sketching and retrieval. Besides366

tracking, the proposed 3D sketching interface always listens to the following five367

sets of voice commands: (1) drawing process control: “start”, “pause”, “resume”,368

“reset”, and “search” commands, which allow a user to initiate, pause and continue369

the current sketching while drawing, or just restart a new sketching, and finally370

perform search after finishing drawing a 3D sketch query; (2) hand change: switch371

between “left hand” and “right hand” for convenience during 3D sketch drawing;372

(3) view display: switch between “front view” and “side view” to easily perceive a373

3D sketch to help and continue the drawing; (4) sketch display mode: “point mode”374

or “line mode” for sketch viewing; (5) results browse: displaying next set of results375

by saying “show more results” or simply “next”. According to our experiments,376

all the aforementioned operations can be performed in real-time and we also have377
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(a) a user is drawing in the air

(b) working mechanism of our 3D sketching interface

Fig. 1 3D sketching idea and working mechanism.

found that these real-time interactions significantly help a user in drawing a 3D378

sketch and improve their overall drawing experience.379

380

3.1 Kalman Filtering381

As we know, we can utilize the Microsoft Kinect to track the 48 important382

joints of a user’s body. However, we have found that usually the captured hand383

motion data contain a lot of noise, though we have found that using a Kinect for384

Windows v2 is much better. This is mainly due to the fact that it is very difficult385

for the users to maintain a very stable and smooth hand movement while drawing386

in the air. They often shake their hands, resulting a hand trajectory which contains387

a lot of unnecessary outliers and small zig-zag line segments. These types of noise388

will have significant impact on the 3D model retrieval performance. In order to389

produce a smooth 3D sketch, an efficient Kalman filter [32] [45] [71] based noise390

removal algorithm is developed and applied on the 3D sketches. As an optimal391
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(a) GUI of the Kinect tracking subsystem

(b) GUI of the retrieval subsystem (basic version)

Fig. 2 3D sketching system Graphical User Interface (GUI).

linear estimator, Kalman filter is capable of inferring parameters of interest from392

inaccurate and uncertain observations.393

Based on an optimal recursive data processing algorithm [45], it takes a series394

of observed measurements over time and produces optimal estimates of unknown395

signal by incorporating all available information including data measurements, and396

prior knowledge of the system and devices for measurement. The implementation397

of the Kalman filter can be found in our project homepage. In our experiments,398
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we find that the Kalman filter successfully filters out partial noises and predicts399

smoother sketch curves.400

4 Dataset Collection and Benchmark Building401

4.1 Kinect300 Dataset Collection402

Based on the developed 3D sketching system introduced in Section 3, we have403

collected a 3D sketch dataset named Kinect300, containing 300 3D sketches, uni-404

formly divided into 30 object categories, that is, each category has 10 3D sketches.405

The 30 classes are: alarm clock, basket, bed, book, candle, chair, dog, door, door406

handle, eyeglasses, floor lamp, fork, hat, house, key, knife, ladder, laptop, mailbox,407

pen, scissors, screwdriver, shovel, skateboard, spider, table, tire, tree, umbrella,408

and vase. We base the category selection mainly on the criteria of popularity (most409

commonly seen categories) to decide these 30 classes, while we also consider the410

coverage/comprehensiveness of our dataset. By using a majority-vote among five411

people (three undergraduate student and a postdoc voters, and a faculty moder-412

ator), we choose the most popular 30 classes from all the available 250 common413

object labels in the TU-Berlin human sketch dataset [14], which serves as the cur-414

rently most comprehensive one. One example per class is demonstrated in Fig. 3.415

Kinect300 avoids the evaluation bias w.r.t data unbalancing problem since we416

collected the same number of sketches for every class, while the sketch variation417

within one class is also adequate enough. During the stage of 3D sketch data col-418

lection, we found 17 volunteer student users of our 3D sketching system. They419

include 4 females and 13 males, while their average age was 21 then, and only two420

males had a background in art. Each of the 17 users drew a set of sketches for421

several categories.422

4.2 SHREC’16 3D Sketch-Based 3D Shape Retrieval Benchmark (SHREC16STB)423

Based on the Kinect300 dataset and SHREC’13 Sketch Track Benchmark424

(SHREC13STB) [37], we built a 3D sketch-based shape retrieval benchmark425

(SHREC16STB) and organized the Eurographics 2016 Shape Retrieval Contest426

(SHREC) track on 3D sketch-based 3D shape retrieval [35].427

Query 3D sketch dataset: The query 3D sketch dataset contains all the 300428

3D sketches (split into 30 classes, 10 sketches for each) available in Kinect300.429

Target 3D model dataset: The target 3D model dataset of the SHREC’13430

Sketch Track Benchmark (SHREC13STB) [37], which has 1,258 models cat-431

egorized int 90 classes, is utilized to form the target 3D model dataset of our432

SHREC16STB benchmark. Fig. 4 demonstrates some examples.433

The reason that we chose SHREC16STB to form the target dataset of this434

proposed 3D sketch-based 3D shape retrieval benchmark SHREC16STB is that the435

large-scale SHREC’13 Sketch Track Benchmark (SHREC13STB) is the currently436

available largest 2D sketch-based 3D model retrieval benchmark. However, the set437

of the 90 classes that are available in SHREC13STB is not a superset of the set438

of the 30 classes available in Kinect300. There are 9 classes coming from Kinect30439

which do not appear in the 90 classes of SHREC13STB. That is to say, only 21440

of the 30 classes in Kinect300 can find their relevant models in the target 3D441

model dataset of this benchmark SHREC16STB. Therefore, when computing442



3D Sketching for 3D Object Retrieval 13

Fig. 3 Example 3D sketches (one example per class, shown in one view) of our Kinect300
dataset.

Fig. 4 Example target 3D models of our SHREC16STB benchmark.

the retrieval performance, we only consider the results of these 21 classes. The443

9 classes that have no relevant 3D models are: alarm clock, basket, candle, door444

handle, eyeglasses, fork, key, pen, and scissors.445

To help evaluate learning-based retrieval approaches as well, for each class we446

randomly pulled out 7 sketches for training and the remaining 3 sketches are used447



14 Bo Li et al.

for testing, while all the 1,258 target models are still kept as a whole to serve as448

the target 3D model dataset.449

4.3 Evaluation Method450

To comprehensively evaluate the performance of the proposed 3D sketch-based451

shape retrieval systems, we employ the following seven evaluation metrics [59] [39]:452

Precision-Recall (PR) diagram, Nearest Neighbor (NN), First Tier (FT), Second453

Tier (ST), E-Measures (E), Discounted Cumulated Gain (DCG) and Average Pre-454

cision (AP). They are commonly used in the field of 3D object retrieval as well455

as information retrieval. We have made the SHREC16STB benchmark, together456

with its evaluation toolkit, publicly available online [34].457

5 3D Sketch-Based 3D Model Retrieval Systems458

Although a 3D sketch has provided us with a better and more comprehensive459

description of the object than a 2D sketch, there is little related research work [11,460

19,20] in 3D sketch understanding including recognition and classification, even less461

in 3D sketches-3D models matching. In this section, we propose two 3D sketch-462

based shape retrieval systems. Section 5.1 presents the basic non-learning one,463

which serves as our novel work as well as a baseline approach in this aspect and464

it is also integrated into our 3D sketching system, as demonstrated in Fig. 2 (b).465

Section 5.2 focuses on the best performance, which represents our advanced and466

learning-based work on this research topic.467

5.1 Basic Version: 3D Shape Histogram-Assisted 3D Sketch-Based 3D Model468

Retrieval System (3DSH)469

Based on the above 3D sketching platform and 3D shape histogram [1], we build470

a simple and basic, yet efficient 3D sketch-based shape retrieval system, named471

3DSH. As demonstrated in Fig. 5, our retrieval system is composed of offline472

and online processes and it has three major components which are 3D outline473

generation, feature extraction, and 3D sketches-3D models matching.474

(1) 3D outline generation. The objective of this stage is to generate a475

3D outline for each target 3D model. Firstly, we normalize each 3D model by476

first aligning it based on Principle Component Analysis (PCA) [30], and then477

translating the center of the model’s bounding sphere to the origin, and finally478

scaling the model to make the radius of its bounding sphere be 1. Please note479

that the same normalization process will be applied on an online hand-drawn 3D480

sketch (Fig. 5 (h)). Secondly, we integrate all the 3D contour points of its six481

principle views (that is front/back, left/right, and top/bottom views) to generate482

a 3D outline for the model, as demonstrated in Fig. 5 (b) for a bicycle model.483

Thirdly, to improve the robustness of our algorithm w.r.t different resolutions of484

3D outlines and sketches, an approximately uniform point sampling is applied on485

the 3D outline by setting a threshold for the distance between any two 3D points486

in the outline, as shown in Fig. 5 (c) for the final 3D outline of the bicycle model.487
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Fig. 5 3DSH’s system framework.

Finally, a PCA alignment is applied (Fig. 5 (d)) on the 3D outline to make it ready488

for extracting the rotation-dependent shape descriptor 3D shape histogram.489

(2) Feature extraction. Most existing shape descriptors, such as the local490

features proposed in [60], target a complete mesh model, rather than a 3D sketch491

model, which is substantially a sparse set of 3D points. Here, we investigate us-492

ing the 3D shape histogram [1] to characterize both 3D models and 3D sketches493

considering its descriptiveness, high efficiency, and simplicity. The 3D shape his-494

togram descriptor depicts a 3D model based on a histogram feature generated by495

calculating the percentages of the model’s vertices falling in a set of pre-defined496

shell, sector or spiderweb bins, which partition the space occupied by the model497

from the center of the model. Shell bins are defined by the different radii of a498

set of concentric shells surrounding the center of a model; sector bins are defined499

based on the idea of uniformly distributing the number of vertices of a 3D model500

into a set of different surface regions of a surrounding sphere of the model. De-501

composition of regular polyhedrons and Voronoi diagrams [3] are utilized for the502

space partition. While, the spiderweb bins are defined by a combined utilization503

of both the Shell and the Sector models, resulting the Combined model which504

provides a finer-grained 3D decomposition for the model’s 3D shape histogram505

feature extraction. One visualization example for the Spiderweb model-based 3D506

shape histogram feature is shown in Fig. 6. Considering the inherent nature of the507

representations for a 3D sketch and a 3D outline, as well as the efficiency issue, for508

each 3D sketch or outline, we extract its 3D shape histogram [1] descriptor based509
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on the following spiderweb model: 20 shells, 6 sectors, that is, 120 bins in total, as510

shown in Fig. 5 (e).511

(a) 3D model (b) point mode (c) feature visualization

Fig. 6 Visualizing the Spiderweb model-based 3D shape histogram (3DSH) feature
of an example model (m349) in the Princeton Shape Benchmark (PSB) [59] dataset. Different
spiderweb bins are colored differently to differentiate from each other.

(3) 3D sketches-3D models matching. We measure the similarity between512

the 3D sketch query and each target 3D model based on the Euclidean distance513

(Fig. 5 (k)) between their 3D shape histograms generated based on their 3D out-514

lines. We sort all the distances in an ascending order (Fig. 5 (m)) and finally rank515

the target 3D models accordingly (Fig. 5 (n)).516

5.2 Advanced Version: Convolutional Neural Network-Based 3D Sketch-Based 3D517

Model Retrieval System (CNN-SBR)518

As shown in Section 5.1, the most straightforward way to perform 3D sketches-3D519

models matching is to compute their feature distances based on some hand-crafted520

shape descriptors for both 3D sketches and 3D models. However, it turns out521

such kind of approach cannot achieve top retrieval accuracy, mainly due to their522

limited descriptive power, as demonstrated by the 3D shape histogram descriptor523

in Section 6.1. Fortunately, as reviewed in Section 2.5, in recent years Convolutional524

Neural Networks (CNNs) have demonstrated their great potentials (e.g. in terms525

of retrieval accuracy) and advantages (i.e. automatic feature extraction, instead526

of hand-crafted features) in the field of 2D sketch-based shape retrieval. Inspired527

by this, to further advance the retrieval accuracy in the hope of finally bridging528

the semantic gap between 2D sketch queries and 3D target models by conducting529

3D sketch-based shape retrieval, in this section we propose a novel CNN-based 3D530

sketch-based shape retrieval system “CNN-SBR” by utilizing multiple state-of-the-531

art deep CNNs in sketch object recognition and 3D model processing techniques.532

5.2.1 CNN-SBR Architecture Overview533

As illustrated in Fig. 7, our CNN-SBR system is inspired by early 2D sketch-534

based image retrieval work. Firstly, multiple 2D sketch views are rendered for535
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Fig. 7 CNN-SBR architecture.

each 3D sketch coming from either the training or the testing dataset, before536

a data augmentation technique is applied on these generated 2D sketch views.537

Secondly, by utilizing the much larger and more comprehensive TU Berlin 2D538

sketch dataset [14], we pre-train our deep CNN model such that we can populate539

our model with a set of well-learned initial weights. Thirdly, further fine-tune the540

CNN model based on the augmented 2D training sketch views. Fourthly, based on541

the fine-tuned CNN model, we generate the classification result for each query 3D542

sketch by feeding its 2D sketch views into the model. Finally, generate the rank543

list for the query based on a majority-vote based label matching method.544

5.2.2 Data Processing545

To fit a 3D sketch query into our proposed CNN-SBR framework, we need to546

transform a 3D sketch into a set of 2D sketch views. To do this, we generate six547

depth images by projecting all the coordinates of a 3D sketch onto the six faces548

(viewpoints) of its bounding cube by mapping the 3D coordinates to a 2D depth549

image, where the pixel values encode the distances between the 3D coordinates550

and their corresponding viewpoints: 0 indicates the nearest while 255 represents551

the farthest.552

To avoid overfitting our CNN models, a data augmentation technique is also553

applied on several involved datasets. In our experiments, we expand the sizes of554

both the TU Berlin 2D sketch dataset and the 2D sketch view set generated from555

the training dataset by 500 times based on random rotations, shifts and flips.556

Specifically, Algorithm 1 details our data augmentation algorithm. By utilizing557

this algorithm, a sketch image will generate 500 new transformed images, which558

increase the variety of sketches and also significantly reduce the noises in users’559

hand-drawings.560



18 Bo Li et al.

Input: S: Original 2D hand-drawn sketch / sketch views dataset
Output: T : Enlarged 2D hand-drawn sketch / sketch views dataset with random

shifts, rotations, and flips
Initialization;
w = widthoriginal − widthtarget;
foreach I ∈ S do

for i← 1 to 500 do
M ← copy(I);
xshift ← random(0, w);
yshift ← random(0, w);
M ← shift(M,xshift, yshift);
roll← random(0, 1);
if roll < 0.5 then

rd← random(−5, 5);
M ← rotate(M, rd);

end
roll← random(0, 1);
if roll < 0.5 then

M ← flip(M)
end
append(T,M);

end

end

Algorithm 1: Data augmentation algorithm.

5.2.3 CNN-SBR System561

In our CNN-SBR system, Sketch-a-Net [76] [77] serves as our core CNN model for562

3D sketch (reduced to 2D sketch views) recognition. Based on AlexNet, Sketch-a-563

Net is designed for 2D single object sketch recognition. It has five convolutional564

layers and three fully-connected lays. Its CNN architecture and explanations of565

its parameters and differences from previous well-known CNNs for images such566

as AlexNet can be found in [76] [77]. Since we have less number of categories,567

the number of neurons in the last layer will be less, for example it is 30 for our568

SHREC16STB benchmark. Considering the big number of categories (250) and569

diverse variation (80) within one category existing in the TU Berlin 2D sketch570

dataset, we use it as an ancillary training dataset and feed it to Sketch-a-Net for571

pre-training. Although the TU Berlin dataset is obtained from human’s 2D sketch-572

ing (rather than for 3D sketching), it provides Sketch-a-Net with a comprehensive573

set of human drawings’ features, which helps build a set of initial learning weights574

for future fine-tuning on a 3D sketch dataset.575

In fine-tuning step, we choose the pre-trained model at epoch 500 trained on576

the TU Berlin 2D sketch dataset, while fine-tuning it on the 3D sketch training577

dataset (resulting 2D sketch views) at epoch 5000.578

5.2.4 Majority Vote and Label Matching579

A majority vote algorithm is utilized to decide the final classification result for580

each 3D sketch based on its six 2D sketch views’ corresponding six CNN-SBR581

output similarity vectors. That is, for each 2D sketch view we have a CNN-SBR582

classification output, which is a similarity vector for predicting its categories. Each583

similarity vector contains a top first label which indicates the category that has the584
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maximum similarity value in the similarity vector. We utilize both the counts of top585

first labels and average similarity values to rank all the target category labels for586

each 3D sketch. The reason to consider average similarity values as well is because587

some target categories may have the same top first label count. Thus, we further588

consider the difference in their average similarities to rank those categories. After589

considering both differences, we are able to simply rank all the target categories590

for each query 3D sketch and accordingly list all relevant target 3D models based591

on their category ranks. In detail, we use the following procedure for ranking.592

(1) Step 1: similarity vector scaling: we scale the similarity values in each593

of the six similarity vectors to make them fall into the range of [0, 1]. A higher594

value indicates bigger similarity.595

(2) Step 2: top first label vector generation: for each target 3D category596

label, we first count its appearance on the top first among the six similarity vectors,597

that is, the top first label count which is an integer belonging to the range of [0, 6].598

We thus form a top first label vector T=[t1, t2, · · ·, tn], where n is the total number599

of categories.600

(3) Step 3: average similarity vector calculation: an average similarity601

vector S=[s1, s2, · · ·, sn] is calculated by averaging over the six similarity vectors602

to measure the similarity between the 3D sketch and all the target 3D category603

labels. Each similarity value in this average similarity vector is in the range of604

[0, 1].605

(4) Step 4: summation vector computation and ranking: all the target606

category labels are ranked based on the summation vector R of the top first label607

vector T and the average similarity vector S: R=T+S, and then all the 3D target608

models are ranked accordingly.609

6 Experiments and Discussions610

6.1 Basic Version: 3DSH Retrieval Experiments611

To conduct a comprehensive evaluation on the performance of our basic retrieval612

system presented in Section 5.1, we conduct the following three different types of613

experiments.614

(1) Outline-model retrieval. This experiment evaluates the performance of615

3D model similarity retrieval given a perfect 3D outline, rather than a rough human616

3D sketch. The target dataset (1,258 3D models, 90 classes) of our SHREC16STB617

benchmark described in Section 4.2 is used as the target 3D model dataset here,618

while the 3D outline queries are directly generated from all the target 3D models.619

(2) Sketch-sketch retrieval. We conduct this 3D sketch similarity retrieval620

using a hand-drawn 3D sketch query considering the fact that the intra-class vari-621

ations of human-drawn 3D sketches in the same category can be extremely high.622

Kinect300 (Section 4.1) is used as both the query and the target datasets in this623

experiment.624

(3) Sketch-model retrieval. This experiment targets our main research625

topic: 3D sketch-based shape retrieval, which measures the retrieval performance of626

searching similar 3D models based on a human 3D sketch query. Our SHREC16STB627

benchmark introduced in Section 4.2 is used for this experiment.628
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6.1.1 Running Time629

We implemented the 3DSH system using C/C++ and performed all the above630

three experiments on a modern computer with an Intel Xeon X5675 @3.07 GHz631

CPU. Due to the high efficiency of both the Kalman filter algorithm and the 3D632

shape histogram-based matching, we have achieved a real-time performance for all633

the above three types of retrieval experiments. For instance, the average time to634

conduct the third type of retrieval is only 1.22 sec.635

6.1.2 Evaluation Results636

Fig. 8 and Table 1 show the experimental results. As one would expect, the per-637

formance of outline-model retrieval is the best, followed by that of sketch-sketch638

retrieval, which again beats that of sketch-model retrieval. It has been found that639

the 3D shape histogram descriptor has good representation capacity in describ-640

ing different vertex distribution patterns among accurate 3D models or perfect641

outlines, but much weaker discrimination power in differentiating models from642

different categories. This also explains why sometimes 3D models from irrelevant643

categories may be returned in the front part of the rank list for a 3D outline query.644

It has also been found that the 3D shape histogram feature is sensitive to noise.645

As can be seen, all the 3D sketches collected in Kinect300 are both extremely646

abstract and very noisy due to the fact that most of the 17 users have little647

drawing experience, especially in 3D sketching. We have found that the sketch648

lines drawn by naive users are often not smooth and even non-continuous. This649

is because during sketching they often pause their hands, which produces many650

densely located noisy points. Even though we have applied Kalman filter to remove651

outliers and smooth the sketching, usually the query sketches still have some noise.652

This partially explains the relative lower performance of sketch-sketch retrieval, if653

compared with that of outline-model retrieval.654

In fact, sketch-model retrieval is the most challenging one among the three655

types of experiments due to the different levels of accuracy and abstraction in the656

query and target datasets. In addition, though small, Kinect300 contains diversi-657

fied categories, including some challenging ones (i.e., dog and human) for people to658

draw a simple and compact 3D sketch. All these facts pertinent to the sketch-model659

retrieval type motivate us to solve this challenging but also interesting specific re-660

search problem: what is the most effective way to measure the distance between a661

rough and abstract hand-drawn 3D sketch and a 3D model with many more de-662

tails and much more accurate 3D information? On the other hand, we have found663

that even based on this simple 3DSH method, we have achieved good retrieval664

results on many simple categories including wineglass, sword, airplanes, and bal-665

loons. This suggests that it is very promising to significantly improve the retrieval666

performance after further research on the above research problem. Three such ex-667

amples using 3D sketches with different levels of complexity are demonstrated in668

Fig. 9.669
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Fig. 8 Precision-Recall diagram performance of our 3DSH system.

Table 1 Other performance metrics of our 3DSH system.

Benchmark NN FT ST E DCG AP

outline-model 0.391 0.156 0.238 0.121 0.486 0.217
sketch-sketch 0.167 0.087 0.139 0.092 0.360 0.176
sketch-model 0.029 0.021 0.038 0.021 0.254 0.029

6.2 Advanced Version: CNN-SBR Experiments670

To further advance the retrieval performance for the sketch-model retrieval, we671

have developed the CNN-SBR system. In order to have a comprehensive evalu-672

ation on its performance, we participated in the Eurographics 2016 Shape Re-673

trieval Contest (SHREC’16) 3D sketch-based shape retrieval track [35] which is674

based on the SHREC16STB benchmark (Section 4.2). Six teams participated in675

this SHREC’16 track, while our basic 3D sketch-based shape retrieval algorithm676

3DSH (Section 5.1) is also included here as a baseline non-learning based method.677

All the participating algorithms are evaluated either on SHREC16STB’s test678

dataset (i.e. for learning-based algorithms such as our CNN-SBR) or on its com-679

plete dataset (i.e. for non-learning based algorithms such as our 3DSH). Our CNN-680

SBR system achieved the best accuracy in terms of all the seven evaluation metrics681

(Section 4.3). In this section, we will conduct a comparative evaluation between682

our CNN-SBR system and several other participating methods in order to find683

out possible reasons that contribute to the state-of-the-art performance of our ap-684

proach. We also compare our CNN-SBR with the most recently proposed approach685

DCHML [10].686
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Fig. 9 3DSH’s three example retrieval results using sketches with different complexities based
on the 3D sketch-based 3D model retrieval system demonstrated in Fig. 2 (b). The first row
shows the 3D sketch queries, while the second row demonstrates the top five retrieval results.

6.2.1 Running Time687

Our CNN-SBR system was implemented using Matlab and the MatConvNet tool-688

box [67]. A server with an 8-core 3.5 GHz CPU and a GeForce GTX Titan X GPU689

was used to perform the experiments. Based on the GPU, it took approximately 1690

hour for the pre-training on the TU Berlin 2D sketch dataset and about 30 minutes691

for the fine-tuning on the Kinect300 dataset. Only five minutes were needed for692
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the majority voting and label matching process, that is the response time for each693

query is about 1.4 seconds.694

6.2.2 Evaluation Results695

Table 2 and Fig. 10 show the evaluation results. It is apparent that on all the seven696

evaluation metrics CNN-SBR has achieved much better performance than other697

learning-based participating algorithms, including the most recent DCHML [10]698

approach. CNN-SBR’s performance is also much higher than non-learning based699

approaches. On the other hand, it is also evident that SHREC16STB is a chal-700

lenging dataset for 3D sketch-based shape retrieval evaluation considering the still701

low overall performance of most methods.702
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Fig. 10 CNN-SBR’s Precision-Recall diagram comparison on the complete dataset of
SHREC16STB for non-learning based algorithms and on its testing dataset for learning
based algorithms.
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Table 2 CNN-SBR’s performance metrics comparison on the SHREC16STB benchmark.

Participant/Author Group Method NN FT ST E DCG AP

Non-learning based methods Complete benchmark

LL 3DSH 0.029 0.021 0.038 0.021 0.254 0.029
Fan LSFMR 0.033 0.020 0.033 0.018 0.248 0.032

Tabia

HOD1-4 0.029 0.015 0.035 0.026 0.259 0.032
HOD64-1 0.052 0.031 0.053 0.034 0.274 0.044
HOD64-2 0.067 0.031 0.057 0.032 0.272 0.044
HOD64-4 0.124 0.019 0.022 0.013 0.230 0.026

Learning-based methods Testing dataset

Li
CNN-Point 0.124 0.044 0.075 0.046 0.294 0.060
CNN-Edge 0.114 0.056 0.084 0.051 0.302 0.063

Yin CNN-Maxout-Siamese 0.000 0.031 0.108 0.048 0.293 0.072
[10] DCHML 0.117 0.106 0.148 0.086 0.327 0.147
Our Group CNN-SBR 0.206 0.249 0.340 0.196 0.472 0.310

6.2.3 Discussions703

First, we comment on other competition methods in the SHREC’16 challenge. For704

DCHML, please refer to Section 2.5. Fan’s Localized Statistical Feature (LSF)705

and Manifold Ranking (MR) approach (LSFMR) is a non-learning based method706

which mainly consists of two components: LSF local feature extraction and mani-707

fold feature distance ranking for enhancing its retrieval performance. Tabia’s His-708

togram of Oriented Distances (HOD) is also a non-learning based method which709

builds a dubbed histogram representing a joint distribution of distances and angles710

for a 3D sketch. Another two CNN-based shape retrieval approaches, Li’s CNN-711

Point and CNN-Edge, are non-learning based methods which train a CNN based712

on a large number of sample views of the point cloud forms of our target 3D mod-713

els. While, a query 3D sketch is first transformed to a point-based or edge-based714

3D sketch, whose sample views are fed into the trained CNN to generate classifi-715

cation output. One more CNN-based approach Yin’s CNN-Maxout-Siamese is716

a learning-based method which employs random view sampling and Siamese CNN717

network.718

It should be noted that both learning-based participating methods (CNN-SBR719

and CNN-Maxout-Siamese) are based on CNN. However, compared with our CNN-720

SBR approach, either non-learning based or other learning-based methods still721

have a big performance gap to catch up.722

After looking over their implementation details, we have identified the following723

advantages or differences of our CNN-SBR system.724

– Adaptive feature learning. Unlike HOD, 3DSH and LSFMR which ex-725

tract conventional hand-crafted features, we utilize deep CNN to conduct au-726

tomatic and adaptive feature learning.727

– Data augmentation. A data augmentation process has been performed in728

our CNN-SBR system both on the TU-Berlin dataset for pre-training and729

the 2D sketch views of each 3D sketch during fine-tuning. By enlarging the730

dataset by 500 times, we significantly reduce the chance of overfitting. However,731

none of other CNN-based participating methods employs this type of data732

augmentation technique to avoid the overfitting problem, which may partially733

explain the much better performance of our algorithm.734

– Pre-training on TU Berlin. We pre-train CNN-SBR based on the cur-735

rently largest and also the most comprehensive sketch dataset: TU Berlin736
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2D sketch dataset. However, other CNN-based methods, including DCHML,737

CNN-Point, CNN-Edge, and CNN-Maxout-Siamese, do not employ this738

pre-training technique by training their CNNs on a large dataset to boost the739

performance, which also, in some degree, explains their relatively unsatisfac-740

tory performance even similarly based on CNNs as ours.741

7 Conclusions and Future Work742

3D sketching in 3D space and 3D sketch-based shape retrieval are novel, inter-743

esting and promising research topics. There exists very little preliminary work744

in this field, which allows us enough room to further explore and produce possi-745

bly very exciting and useful research results. In this paper, we have developed a746

novel 3D sketching system, based on which we collected a 3D sketch dataset and747

built a benchmark for 3D sketch-based shape retrieval. We also proposed two 3D748

sketch-based shape retrieval systems. The results of performance evaluation have749

demonstrated the promising potentials of our 3D sketching technique in related ap-750

plications such as collecting 3D sketch data and conducting 3D sketch-based shape751

retrieval. Our CNN-based 3D sketch-based shape retrieval algorithm (CNN-SBR)752

also achieves top performance in a related Shape Retrieval Contest (SHREC)753

track. We believe all these will have many implications in related research and754

applications.755

Nonetheless, there are quite a few open questions to further promote the two756

challenging tasks: 3D sketching and 3D sketch-based shape retrieval. Firstly, de-757

veloping an even more convenient and effective human-computer interface to help758

people draw 3D sketches freely in a 3D space is among the top list of our future759

work. More advanced and specific 3D sketches-3D models matching algorithms are760

deserved for our further exploration as well for this specific type of retrieval. In761

addition, the 3D sketches currently we have collected are quite abstract and noisy.762

It will be rewarding to propose even better denoising and smoothing algorithms763

to further filter out more noisy points existing in a 3D sketch. Finally, to further764

promote the performance of our retrieval system, we plan to collect a large-scale765

3D sketch dataset from more diverse users, and then use it to train our system for766

better matching between 3D sketches and 3D models.767
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57. J. Sedmidubský and P. Zezula. Similarity Search in 3D Human Motion Data. In A. El-921

Saddik, A. D. Bimbo, Z. Zhang, A. G. Hauptmann, K. S. Candan, M. Bertini, L. Xie,922

and X. Wei, editors, Proceedings of the 2019 on International Conference on Multimedia923

Retrieval, ICMR 2019, Ottawa, ON, Canada, June 10-13, 2019, pages 5–6. ACM, 2019.924

58. C. Shao, A. Bousseau, A. Sheffer, and K. Singh. Crossshade: shading concept sketches925

using cross-section curves. ACM Trans. Graph., 31(4):45:1–45:11, 2012.926

59. P. Shilane, P. Min, M. M. Kazhdan, and T. A. Funkhouser. The Princeton Shape Bench-927

mark. In (SMI 2004, 7-9 June 2004, Genova, Italy, pages 167–178, 2004.928

60. I. Sipiran, J. Lokoc, B. Bustos, and T. Skopal. Scalable 3D shape retrieval using local929

features and the signature quadratic form distance. Vis. Comput., 33(12):1571–1585, 2017.930

61. J. G. Snodgrass and M. Vanderwart. A standardized set of 260 pictures: norms for name931

agreement, image agreement, familiarity, and visual complexity. Journal of Experimental932

Pyschology: Human Learning and Memory, 6(2):174–215, 1980.933

62. P. Sousa and M. J. Fonseca. Geometric matching for clip-art drawing retrieval. J. Vis.934

Comun. Image Represent., 20(2):71–83, Feb. 2009.935

63. H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. Multi-view convolutional neural936

networks for 3D shape recognition. In ICCV 2015, Santiago, Chile, December 7-13, 2015,937

pages 945–953, 2015.938

64. Z. Sun, C. Wang, L. Zhang, and L. Zhang. Query-adaptive shape topic mining for hand-939

drawn sketch recognition. In ACM MM’12, Nara, Japan, October 29 - November 02,940

2012, pages 519–528, 2012.941

65. I. E. Sutherland. Sketchpad: a man-machine graphical communication system. In Proceed-942

ings of the SHARE Design Automation Workshop, DAC ’64, pages 329–346, New York,943

NY, USA, 1964. ACM.944

66. J. W. H. Tangelder and R. C. Veltkamp. A survey of content based 3d shape retrieval945

methods. Multimedia Tools Appl., 39(3):441–471, 2008.946

67. A. Vedaldi and K. Lenc. MatConvNet: Convolutional Neural Networks for MATLAB. In947

ACM MM ’15, Brisbane, Australia, October 26 - 30, 2015, pages 689–692, 2015.948

68. R. C. Veltkamp and F. B. ter Haar. SHREC 2007 3D Retrieval Contest. Technical Report949

UU-CS-2007-015, Department of Information and Computing Sciences, Utrecht University,950

2007.951

69. F. Wang, L. Kang, and Y. Li. Sketch-based 3D shape retrieval using convolutional neural952

networks. In CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages = 1875–1883, year953

= 2015,.954

70. P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. O-CNN: Octree-based convo-955

lutional neural networks for 3D shape analysis. ACM Transactions on Graphics (SIG-956

GRAPH), 36(4), 2017.957

71. G. Welch and G. Bishop. An introduction to the Kalman filter. Technical report, University958

of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.959

72. J. Xie, G. Dai, F. Zhu, and Y. Fang. Learning barycentric representations of 3D shapes for960

sketch-based 3D shape retrieval. In CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,961

pages 3615–3623, 2017.962



3D Sketching for 3D Object Retrieval 29

73. Y. Ye, B. Li, and Y. Lu. 3D sketch-based 3D model retrieval with convolutional neural963

network. In ICPR 2016, Cancún, Mexico, December 4-8, 2016, pages = 2936–2941, year964

= 2016.965

74. S. M. Yoon, M. Scherer, T. Schreck, and A. Kuijper. Sketch-based 3D model retrieval966

using diffusion tensor fields of suggestive contours. In ACM Multimedia, pages 193–200,967

2010.968

75. Q. Yu, F. Liu, Y. Song, T. Xiang, T. M. Hospedales, and C. C. Loy. Sketch me that shoe.969

In CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 799–807, 2016.970

76. Q. Yu, Y. Yang, F. Liu, Y. Song, T. Xiang, and T. M. Hospedales. Sketch-a-Net: a deep971

neural network that beats humans. International Journal of Computer Vision, in press,972

2017.973

77. Q. Yu, Y. Yang, Y. Song, T. Xiang, and T. M. Hospedales. Sketch-a-Net that beats974

humans. In BMVC 2015, Swansea, UK, September 7-10, 2015, pages 7.1–7.12, 2015.975

78. R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. SKETCH: an interface for sketching 3D976

scenes. In SIGGRAPH 2007, San Diego, California, USA, August 5-9, 2007, Courses,977

page 19, 2007.978

79. F. Zhu, J. Xie, and Y. Fang. Learning cross-domain neural networks for sketch-based 3D979

shape retrieval. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,980

February 12-17, 2016, Phoenix, Arizona, USA., pages 3683–3689, 2016.981


	Introduction
	Related Work
	3D Sketching
	Dataset Collection and Benchmark Building
	3D Sketch-Based 3D Model Retrieval Systems
	Experiments and Discussions
	Conclusions and Future Work

